Optimally-Weighted Herding is Bayesian Quadrature

نویسندگان

  • Ferenc Huszar
  • David K. Duvenaud
چکیده

Herding and kernel herding are deterministic methods of choosing samples which summarise a probability distribution. A related task is choosing samples for estimating integrals using Bayesian quadrature. We show that the criterion minimised when selecting samples in kernel herding is equivalent to the posterior variance in Bayesian quadrature. We then show that sequential Bayesian quadrature can be viewed as a weighted version of kernel herding which achieves performance superior to any other weighted herding method. We demonstrate empirically a rate of convergence faster than O(1/N). Our results also imply an upper bound on the empirical error of the Bayesian quadrature estimate.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weighted quadrature rules with binomial nodes

In this paper, a new class of a weighted quadrature rule is represented as --------------------------------------------  where  is a weight function,  are interpolation nodes,  are the corresponding weight coefficients and denotes the error term. The general form of interpolation nodes are considered as   that  and we obtain the explicit expressions of the coefficients  using the q-...

متن کامل

Active Learning of Model Evidence Using Bayesian Quadrature

Numerical integration is a key component of many problems in scientific computing, statistical modelling, and machine learning. Bayesian Quadrature is a modelbased method for numerical integration which, relative to standard Monte Carlo methods, offers increased sample efficiency and a more robust estimate of the uncertainty in the estimated integral. We propose a novel Bayesian Quadrature appr...

متن کامل

Super-Samples from Kernel Herding

We extend the herding algorithm to continuous spaces by using the kernel trick. The resulting “kernel herding” algorithm is an infinite memory deterministic process that learns to approximate a PDF with a collection of samples. We show that kernel herding decreases the error of expectations of functions in the Hilbert space at a rateO(1/T )which is much faster than the usual O(1/ √ T ) for iid ...

متن کامل

Optimally Blended Spectral-Finite Element Scheme for Wave Propagation and NonStandard Reduced Integration

We study the dispersion and dissipation of the numerical scheme obtained by taking a weighted averaging of the consistent (finite element) mass matrix and lumped (spectral element) mass matrix for the small wavenumber limit. We find and prove that for the optimum blending the resulting scheme (a) provides 2p+4 order accuracy for p-th order method (two orders more accurate compared with finite a...

متن کامل

Sampling for Inference in Probabilistic Models with Fast Bayesian Quadrature

We propose a novel sampling framework for inference in probabilistic models: an active learning approach that converges more quickly (in wall-clock time) than Markov chain Monte Carlo (MCMC) benchmarks. The central challenge in probabilistic inference is numerical integration, to average over ensembles of models or unknown (hyper-)parameters (for example to compute the marginal likelihood or a ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012